5 research outputs found

    A 3D IC BIST for pre-bond test of TSVs using Ring Oscillators

    Get PDF
    International audience3D stacked integrated circuits based on Through Silicon Vias (TSV) are promising with their high performances and small form factor. However, these circuits present many test issues, especially for TSVs. In this paper we propose a novel Built-In-Self-Test (BIST) architecture for pre-bond testing of TSVs in 3D stacked integrated circuits. The main idea is to measure the variation of TSVs capacitances in order to detect defective TSVs. The BIST architecture is based on ring oscillators, frequencies of which depend on TSVs capacitances. The proposed BIST is integrated within the JTAG standard. This paper presents spice simulation results and logic synthesis results of the proposed TSV ring oscillator structure using a 65 nm CMOS technology, including 10 μm diameter TSV middle technology. Due to local process variations, the proposed test architecture is limited in accuracy; it detects only large capacitive faults on TSVs

    Design for Test of TSV Based 3D Stacked Integrated Circuits

    No full text
    Depuis plusieurs années, la complexité des circuits intégrés ne cesse d'augmenter : du SOC (System On Chip) vers le SIP (System In Package), et plus récemment les circuits empilés en 3D : les 3D SIC (Stacked Integrated Circuits) à base de TSVs (Through Silicon Vias) interconnectant verticalement les tiers, ou puces, du système. Les 3D SIC présentent de nombreux avantages en termes de facteur de forme, de performance et de consommation mais demandent aussi de relever de nombreux défis en ce qui concerne leur test, étape nécessaire avant la mise en service de ces systèmes complexes. Dans cette thèse, nous nous attachons à définir les infrastructures de test qui permettront de détecter les éventuels défauts apparaissant lors de la fabrication des TSVs ou des différentes puces du système. Nous proposons une solution de BIST (Built In Self Test) pour le test avant empilement des TSVs. Cette solution est basée sur l'utilisation d'oscillateurs en anneaux dont la fréquence d'oscillation dépend des caractéristiques électriques des TSVs. La solution de test proposée permet non seulement la détection de TSVs fautifs mais aussi de renseigner sur le nombre d'éléments défectueux et leur identification. D'autre part, nous proposons une architecture de test 3D basée sur la nouvelle proposition de norme IEEE P1687. Cette infrastructure permet de donner accès aux composants du système 3D avant et après empilement. Elle permet d'autre part de profiter du recyclage des données de test développées et appliquées avant empilement pour chacun des tiers puis ré-appliqués durant ou après l'empilement. Ces travaux aboutissent finalement à l'ouverture d'une nouvelle problématique liée à l'ordonnancement des tests sous contraintes (puissance consommée, température).Mots-clés : test, circuits 3D, TSV, BIST, oscillateur en anneau, architecture de test 3D, IEEE P1687, test avant empilement, test après empilement.For several years, the complexity of integrated circuits continues to increase, from SOC (System On Chip) to SIP (System In Package) , and more recently 3D SICs (Stacked Integrated Circuits) based on TSVs (Through Silicon Vias ) that vertically interconnect stacked circuits in a 3D system. 3D SICs have many advantages in terms of small form factor, high performances and low power consumption but have many challenges regarding their test which is a necessary step before the commissioning of these complex systems. In this thesis we focus on defining the test infrastructure that will detect any occurring defects during the manufacturing process of TSVs or the different sacked chips in the system. We propose a BIST (Built In Self Test) solution for TSVs testing before stacking, this solution is based on the use of ring oscillators which their oscillation frequencies depend on the electrical characteristics of the TSVs. The proposed test solution not only allows the detection of faulty TSVs but also gives information about the number of defective TSVs and their location. On the other hand, we propose a 3D DFT (Design For Test) architecture based on the new proposed test standard IEEE P1687. The proposed test architecture provides test access to the components of the 3D system before and after stacking. Also it allows the re-use of recycled test data developed and applied before stacking to each die in the mid-bond and post-bond test levels. This work lead to the opening of a new problem related to the test scheduling under constraints such as: power consumption, temperature.Keywords: test, 3D circuits, TSV, BIST, ring oscillators, 3D DFT architecture, IEEE P1687, pre-bond test, post-bond test

    2D to 3D Test Pattern Retargeting Using IEEE P1687 Based 3D DFT Architectures

    Get PDF
    International audienceDesign For Test (DFT) of 3D stacked integrated circuits based on Through Silicon Vias (TSVs) is one of the hot topics in the field of test of integrated circuits. This is due to the hard test accessibility (especially for upper dies) and to the high complexity where each die can embed hundreds of IPs. In this paper we propose a DFT architecture based on IEEE P1687 to enable the test of 3D stacked ICs. The proposed test architecture allows the test at all 3D fabrication levels: pre-, mid-, and post-bond levels. We present a test pattern retargeting flow using IEEE P1687 languages ICL (Instrument Connectivity Language) and PDL (Procedural Description Language), which allows easy retargeting from 2D (die-level) to 3D (stack-level). Compared to IEEE 1149.1 based 3D test architecture, our proposed 3D test architecture is more flexible and enhances test concurrency without an additional area cost

    3D DFT Challenges and Solutions

    No full text
    International audienceDesign-For-Test (DFT) of 3D stacked integrated circuits based on Through Silicon Vias (TSVs) is one of the hot topics in the field of test of integrated circuits. This is due to the test access complexity of dies' components that must be controlled/observed before and after bonding (especially for upper dies), and the high complexity of 3D systems where each die can embed hundreds of IPs. DFT of 3D circuits concerns all the components of the 3D system, including the dies and the inter-die interconnections. We address the problem of test architecture definition for both TSVs testing before bonding and cores testing before and after bonding. We present test solutions allowing to access the components under test while physical interconnects for test data propagation differ according to the stacking step. The paper also discusses core test scheduling issues

    3D Design For Test Architectures Based on IEEE P1687

    No full text
    International audience3D stacked integrated circuits based on Through Silicon Vias (TSV) are promising with their high performances and small form factor. However, these circuits present many test issues. In this paper we propose a novel 3D Design for Test (DFT) architecture based on IEEE P1687. The proposed test architecture enables test at all 3D fabrication levels: pre, mid, and post-bond levels. We discuss 3 DFT architecture proposals and we show one practical implementation using a commercial EDA tool
    corecore